MINIEYE杯第十六届华中科技大学程序设计邀请赛补题

yuanheci 2023年11月06日 493次浏览

D题 =====>《Difference》

第k大(二分)+ 双指针 + ST表,细节巨多,折磨王。。。

#include <bits/stdc++.h>
using namespace std;

typedef long long LL;
const int N = 500010;
int mx[N][21], mn[N][21], Log2[N];
int a[N], n;
LL k, ans;

//ST
void ST(){
	for(int i = 2; i <= n; i++) Log2[i] = Log2[i / 2] + 1;
	for(int j = 0; j < 21; j++){
		for(int i = 1; i + (1 << j) - 1 <= n; i++){
			if(!j) mx[i][j] = mn[i][j] = a[i];
			else{
				mx[i][j] = max(mx[i][j - 1], mx[i + (1 << j - 1)][j - 1]);
				mn[i][j] = min(mn[i][j - 1], mn[i + (1 << j - 1)][j - 1]);
			}
		}
	}
}

int qmx(int l, int r){
	int k = Log2[r - l + 1];
	return max(mx[l][k], mx[r - (1 << k) + 1][k]);
}

int qmn(int l, int r){
	int k = Log2[r - l + 1];
	return min(mn[l][k], mn[r - (1 << k) + 1][k]);
}

//窗口具有单调性,因此用双指针 
bool check(LL x){
	LL res = 0;
	for(int i = 1, j = 1; i <= n; i++){
		while(j <= i && (1LL* (qmx(j, i) - qmn(j, i)) * (i - j + 1)) >= x) j++;
		res += i - j + 1;
	}
	res++;
	return res <= k; 
}

void solve(){
	scanf("%d%lld", &n, &k);
	for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
	ST();
	k = 1LL* n * (1 + n) / 2 - k + 1;  //转为第k小,方便双指针考虑 
	LL l = 0, r = 1LL* n * (qmx(1, n) - qmn(1, n));	
	//二分这里卡了好久
	/**
		因为双指针找的是小于x的数量,因此二分x时,x越小,得到的统计值ans越小,此时ans <= k越容易满足,
		因此二分的是左半段的右边界。 
	*/ 
	while(l < r){  
		LL mid = l + r + 1 >> 1;
		if(check(mid)) l = mid;
		else r = mid - 1;
	}
	printf("%lld\n", l);
}

int main(){
	int _ = 1;
	while(_ -- ) solve();
	return 0;
}

F题 =====>《K-th Power》

容斥原理

333


根据容斥原理特点,一般有三种做法:


一:dfs方式

#include <bits/stdc++.h>
using namespace std;

typedef long long LL;
const int N = 1e7 + 10;
LL primes[N], cnt;
LL qs[N];
bool st[N];
LL l, r, k, res;

void init(int n){
	for(int i = 2; i <= n; i++){
		if(!st[i]) primes[cnt++] = i;
		for(int j = 0; primes[j] <= n / i; j++){
			st[primes[j] * i] = true;
			if(i % primes[j] == 0) break;
		}
	}
}

LL qmi(LL a, LL b, LL r){
	LL s = 1;
	while(b){
		if(b & 1) {
			if(s > r / a) return 0;
			s *= a;
		}
		if(a > r / a && b >> 1) return 0; 
		a *= a;
		b >>= 1;
	}
	return s;
}

//做容斥 
void dfs(LL x, LL y, int c, int ns){
	if(ns & 1) res += x / y;
	else if(ns > 0) res -= x / y;  
	for(int i = c; i < cnt; i++){
		if(qs[i] && qs[i] <= x / y){
			dfs(x, y * qs[i], i + 1, ns + 1);
		} 	
		else break;
	}
}

LL calc(LL x){
	res = 0;
	dfs(x, 1, 0, 0);
	return x - res;
}

void solve(){
	init(N - 1);
	scanf("%lld%lld%lld", &l, &r, &k);
	for(int i = 0; i < cnt; i++){
		qs[i] = qmi(primes[i], k, r);
		if(qs[i] == 0) break;
	}
	printf("%lld\n", calc(r) - calc(l - 1));
}

int main(){
	int _ = 1;
//	scanf("%d", &_);
	while(_ -- ) solve(); 
}

二. 莫比乌斯函数方式

#include <bits/stdc++.h>
using namespace std;

typedef long long LL;
const int N = 1e7 + 10;
LL primes[N], mu[N], cnt;
LL qs[N];
bool st[N];
LL l, r, k, res;

void init(int n){
	mu[1] = 1;
	for(int i = 2; i <= n; i++){
		if(!st[i]) primes[cnt++] = i, mu[i] = -1;
		for(int j = 0; primes[j] <= n / i; j++){
			st[primes[j] * i] = true;
			if(i % primes[j] == 0) break;
			mu[primes[j] * i] = -mu[i];
		}
	}
}

LL qmi(LL a, LL b, LL r){
	LL s = 1;
	while(b){
		if(b & 1) {
			if(s > r / a) return 0;
			s *= a;
		}
		if(a > r / a && b >> 1) return 0; 
		a *= a;
		b >>= 1;
	}
	return s;
}


LL calc(LL x){
	LL res = 0;
	for(int i = 2; i <= 1e7; i++){
		LL t = qmi(i, k, x);
		if(t == 0) break;
		res += x / t * mu[i];
	}
	return x + res;
}

void solve(){
	init(N - 1);
	scanf("%lld%lld%lld", &l, &r, &k);
	printf("%lld\n", calc(r) - calc(l - 1));
}

int main(){
	int _ = 1;
//	scanf("%d", &_);
	while(_ -- ) solve(); 
}

H题 =====>《Permutation Counting》

拓扑排序 组合数 树形dp

  之后发现题目中说明了每对关系(x, y)中x保证不同,假设按照y – > x,说明每个节点都最多只有一个父节点又考虑到是一个有向图且无环,那么就是树形图。原来那种建图方式(x --> y) 表明每个节点可有>1个的父节点。
  为了方便计算,可以新建一个虚拟源点0号点,和所有入度为0的点建边。那么就把本题转化为了树上问题。

#include <bits/stdc++.h>
using namespace std;

const int MOD = 998244353, N = 2e6 + 10;
int n, m; 
int h[N], e[N], ne[N], idx;
int q[N], hh, tt;
int du[N];
int fact[N], infact[N];
int sz[N], f[N];  //sz[i]代表以i为根的子树的结点数量,注意要设置0号结点作为根结点 

void add(int a, int b){
	e[idx] = b, ne[idx] = h[a], h[a] = idx++;
} 

int qmi(int a, int b){
	int res = 1;
	while(b){
		if(b & 1) res = 1LL* res * a % MOD;
		a = 1LL* a * a % MOD;
		b >>= 1;
	}
	return res;
}

void init(){
	fact[0] = infact[0] = 1;
	for(int i = 1; i <= n; i++){
		fact[i] = 1LL* fact[i - 1] * i % MOD;
		infact[i] = 1LL* infact[i - 1] * qmi(i, MOD - 2) % MOD;
	}
}

bool topsort(){
	hh = 0, tt = -1;
	q[++tt] = 0;
	while(hh <= tt){
		auto t = q[hh++];
		for(int i = h[t]; ~i; i = ne[i]){
			int j = e[i];
			if(--du[j] == 0){
				q[++tt] = j;
			}
		} 
	}
	return tt == n;
}

int dfs1(int u){
	sz[u] = 1;
	for(int i = h[u]; ~i; i = ne[i]){
		int j = e[i];
		sz[u] += dfs1(j);
	}
	return sz[u];
}

int dfs2(int u){
	f[u] = 1;
	int s = sz[u];
	for(int i = h[u]; ~i; i = ne[i]){
		int j = e[i];
		dfs2(j);
		f[u] = 1LL* f[u] * f[j] % MOD * fact[s - 1] % MOD * infact[sz[j]] % MOD 
				* infact[s - 1 - sz[j]] % MOD;
		s -= sz[j];
	}
	return f[u];
} 

void solve(){
	scanf("%d%d", &n, &m);
	memset(h, -1, sizeof h);
	init();
	for(int i = 0; i < m; i++){
		int x, y; scanf("%d%d", &x, &y);
		add(y, x);
		du[x]++;
	}
	for(int i = 1; i <= n; i++){
		if(du[i] == 0) add(0, i), du[i]++;
	}
	if(topsort()){
		dfs1(0);
		dfs2(0);  //树形dp 
		printf("%d\n", f[0]);
	}
	else puts("0");
}

int main(){
	int _  = 1;
//	scanf("%d", &_);
	while(_ -- ) solve(); 
}